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This paper presents and compares various numerical techniques for the long-wave short-
wave interaction equations. In addition to the standard explicit, implicit schemes and the
spectral methods, a novel scheme SRK which is based on a time-splitting approach com-
bined with the Runge–Kutta method is presented. We demonstrate that not only the
SRK scheme is efficient compared to the split step spectral methods, but it can apply
directly to problems with general boundary conditions. The conservation properties of
the numerical schemes are discussed. Numerical simulations are reported for case studies
with different types of initial data. The present study enhances our understanding of the
behavior of nonlinear dispersive waves in the semi-classical limit.
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1. Introduction

In this paper, we study the long-wave short-wave interaction equations
i�w�t þ
�2

2
w�xx � ðaðjw

�j2 � 1Þ þ V eÞw� ¼ 0; ð1:1Þ

V e
t ¼ �kðjw�j2Þx; ð1:2Þ
where the complex-valued function w� and the real-valued function V� represent the envelope of the short-wave and the ampli-
tude of the long-wave, respectively. The parameter � is analogous to the Planck constant. The coupling between the long-wave
and short-wave is given by k, which is real and introduces the dispersion interaction. The nonlinearity in the coupled system is
due to a. a > 0 corresponds to the defocusing nonlinearity, and a < 0 represents the focusing nonlinearity. However, due to the
hydrodynamical structure, we only discuss the defocusing case in this paper. The initial values are given by
w�ðx;0Þ ¼ w�0ðxÞ; ð1:3Þ
V�ðx;0Þ ¼ V�0ðxÞ: ð1:4Þ
The water wave interaction equations (1.1)–(1.4) has been used to model surface waves in the presence of both gravity
and capillary modes. The topic is also of interest in plasma physics [23]. The equations can be derived as the substitute for
the Davey–Stewartson system due to the effect of resonance, a phenomenon that occurs when the group velocity of the short
. All rights reserved.
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waves matches the phase velocity of the long waves [7,15]. When V� ¼ 0, Eq. (1.1) is a nonlinear Schrödinger (NLS) equation
which has been studied by many mathematicians and physicists. If k ¼ 0, Eq. (1.1) is the cubic NLS equation with a stationary
potential V� ¼ V�0ðxÞ. Integrating Eq. (1.2) in t and eliminating V� in Eq. (1.1), the system can be rewritten as
i�w�t þ
�2

2
w�xx ¼ �k

Z t

0
ðjw�ðx; sÞj2Þx ds

� �
w� þ ½V�0ðxÞ þ aðjw�j2 � 1Þ�w�; w�ðx;0Þ ¼ w�0ðxÞ:
In [23], Ogawa proved the global well-posedness of Eqs. (1.1)–(1.4) for � ¼ 1 in the largest class of the initial data. Let bar
‘‘-” denote the complex conjugate. Through a direct deduction, the following conservation laws can be obtained:
Z 1

�1
jw�ðx; tÞj2 dx ¼ const:; ð1:5ÞZ 1

�1

i�
2

w�xðx; tÞ
w�ðx; tÞ

� w�xðx; tÞ
w�ðx; tÞ

 !
dx ¼ const:; ð1:6ÞZ 1

�1
V�ðx; tÞdx ¼ const:; ð1:7ÞZ 1

�1

i�
2
ðw�ðx; tÞw�xðx; tÞ � w�xðx; tÞw

�ðx; tÞÞ þ 1
2k
jV�ðx; tÞj2

� �
dx ¼ const:; ð1:8ÞZ 1

�1
V�t ðx; tÞjw

�ðx; tÞj2 dx ¼ 0; ð1:9ÞZ 1

�1
E�ðx; tÞdx ¼ const:; ð1:10Þ
where the energy density E� is given by
E�ðx; tÞ ¼ �
2

2
jw�xðx; tÞj

2 þ a
2
ðjw�ðx; tÞj2 � 1Þ2 þ V�ðx; tÞjw�ðx; tÞj2: ð1:11Þ
The semi-classical problem has been the subject of research in the past 20 years (see [3,8,13,14,18–22]). Recently, con-
siderable interest has been reported on the semi-classical limit of the water wave interaction equations since the study en-
hances our understanding of the general semi-classical behavior of the nonlinear dispersive waves. There are many works
related to the numerical study of the semi-classical limit of the nonlinear Schrödinger equation. In [2,3] Bao et al. investigate
the performance of time-splitting spectral approximations for general nonlinear Schrödinger equations in semi-classical re-
gimes (see also [5]). The Wigner measure approach for the Dufort–Frankel difference scheme is reported in [21]. Markowich
et al. in [20] discuss a similar problem using the semi-classical differential Weyl operator with a smooth symbol.

Even though numerous computational methods have been investigated for the single nonlinear equation (see [2–5,9–
27]); to the best of our knowledge, numerical simulation for the coupled system given in (1.1)–(1.4) has not been reported.
The purpose of this work is to present numerical methods which are capable of solving the coupled system of interaction
equations. For the model problem, we consider x 2 ½xL; xR�, t P 0, and with the following periodic boundary condition:
w�ðxL; tÞ ¼ w�ðxR; tÞ: ð1:12Þ
However, other boundary conditions such as the Dirichlet or Neumann types could be imposed.
In the remainder of the paper, we consider various numerical algorithms for the solutions of Eqs. (1.1)–(1.4) and (1.12).

Since the mathematical problem admits certain conservation laws, and we will prove that some of the conservative proper-
ties are preserved in the numerical schemes. To assess the accuracy and effectiveness of the computational schemes, numer-
ical simulations are preformed for various test cases including particular cases corresponding to the plane wave and soliton
in which exact solutions are known.
2. Numerical schemes

We now present various numerical schemes for the solutions of the long-wave short-wave interaction equations given in
Eqs. (1.1)–(1.4) with a periodic boundary condition Eq. (1.12). First, the following notations are defined:
xj ¼ xL þ jh; tn ¼ n � s; 0 6 j 6 J ¼ ½xR�xL
h �; n ¼ 0;1;2; . . . ; ½Ts�;

w�ðj;nÞ � w�ðxj; tnÞ; V�ðj;nÞ � V�ðxj; tnÞ;

wn
j � w�ðj;nÞ; V

nþ1
2

j � V�ðxj; ðnþ 1
2ÞsÞ;

ðWn
j Þx ¼ 1

h ðW
n
jþ1 �Wn

j Þ; ðWn
j Þ�x ¼ 1

h ðW
n
j �Wn

j�1Þ;
ðWn

j Þt ¼ 1
s ðW

nþ1
j �Wn

j Þ; r � s
h2 ; s � s

h ;

kWnk2
2 ¼ h

PJ

j¼1
jWn

j j
2
; kWnk1 ¼ sup

16j6J
jWn

j j:
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2.1. Crank–Nicolson implicit (CNI) scheme

The CNI is a well-known implicit method which has been widely used in numerical analysis. The CNI scheme is given
by
i�ðwn
j Þt þ

�2

4
ðwnþ1

j þ wn
j Þx�x � a

jwnþ1
j j2 þ jwn

j j
2

2
� 1

 !
þ V

nþ1
2

j

 !
wnþ1

j þ wn
j

2
¼ 0; ð2:1Þ

ðVn�1
2Þt ¼ �k

jwn
jþ1j

2 � jwn
j�1j

2

2h
; ð2:2Þ

w0
j ¼ w�0ðxjÞ; ð2:3Þ

V
�1

2
j ¼ V�0ðxjÞ; ð2:4Þ

wn
j ¼ wn

Jþj; n ¼ 1;2; . . . ;1 6 j 6 J ð2:5Þ
Note that, Eq. (2.1) is implicit and the solution requires solving a tridiagonal system of nonlinear equations. However, Eq.
(2.2) is explicit and the unknowns V

nþ1
2

j can be computed directly. To solve Eq. (2.1), the following simple iterative algorithm
can be employed
�2r
4

wnþ1ðsþ1Þ
jþ1 þ i�� �

2r
2
� s

2
a
jwnþ1ðsÞ

j j2 þ jwn
j j

2

2
� 1

 !
þ V

nþ1
2

j

 !" #
wnþ1ðsþ1Þ

j

¼ � �
2r
4

wnþ1ðsþ1Þ
j�1 � �

2r
4

wn
jþ1 þþ i�þ �

2r
2
þ s

2
a
jwnþ1ðsÞ

j j2 þ jwn
j j

2

2
� 1

 !
þ V

nþ1
2

j

 !" #
wn

j �
�2r
4

wn
j�1; ð2:6Þ
where the superscript s denotes the s-th iterate in solving the nonlinear equations at a given time step. The initial iterate
wnþ1ð0Þ

j can be chosen as
wnþ1ð0Þ
j ¼ wn

j :
Hence, the resulting tridiagonal system Eq. (2.6) can be computed by the standard Gaussian elimination method. The iter-
ation continues until the condition
max
j
jwnþ1ðsþ1Þ

j � wnþ1ðsÞ
j j < 10�6 ð2:7Þ
is reached. The truncation error of the CNI scheme is of order Oðs2 þ h2Þ. According to the linearized stability analysis, the
CNI scheme is unconditionally stable.

2.2. Three-level explicit (3LE) scheme

In order to eliminate the requirement to solve nonlinear difference equations, we consider two explicit schemes. The first
method is based on the 3LE algorithm
i�
wnþ1

j � wn�1
j

2s
þ �

2

2
ðwn

j Þx�x � aðjwn
j j

2 � 1Þ þ V
nþ1

2
j

� �
wn

j ¼ 0; ð2:8Þ

ðVn�1
2

j Þt ¼ �k
jwn

jþ1j
2 � jwn

j�1j
2

2h
: ð2:9Þ
The truncation error of the 3LE scheme is of order Oðs2 þ h2Þ. According to the linearized stability analysis, the 3LE is con-
ditionally stable if s�

h2 6
1
2.

2.3. Hopscotch (HOP) scheme

Another explicit scheme is given by HOP, where Eq. (1.1) is solved in two steps. First, an explicit step
i�ðwn
j Þt þ

�2

2
ðwn

j Þx�x � að
jwn

jþ1j
2 þ jwn

j�1j
2

2
� 1Þ þ V

nþ1
2

j

 !
wn

j ¼ 0; ð2:10Þ
is used for the odd values of nþ j; then an implicit step
i�ðwn
j Þt þ

�2

2
ðwnþ1

j Þx�x � að
jwnþ1

jþ1 j
2 þ jwnþ1

j�1 j
2

2
� 1Þ þ V

nþ1
2

j

 !
wnþ1

j ¼ 0; ð2:11Þ
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is applied for the even values of nþ j. Notice that, wnþ1
j are computed explicitly by Eq. (2.10). Although Eq. (2.11) is expressed

in an implicit form, since the values wnþ1
j when nþ j odd are already known, it is actually an explicit formula for wnþ1

j when
nþ j is even. Combining Eqs. (2.10) and (2.11), Eq. (2.10) may be replaced by the extrapolation formula
wnþ1
j ¼ 2wn

j � wn�1
j ; ð2:12Þ
for odd values of nþ j. The solution for V is given by
ðVn�1
2

j Þt ¼ �k
jwn

jþ1j
2 � jwn

j�1j
2

2h
: ð2:13Þ
The truncation error for the HOP scheme is of order O s2 þ h2 þ s2

h2

� �
: Therefore, the condition s ¼ oðhÞ is required to ensure

the convergence. Unlike the 3LE scheme, the HOP is unconditionally stable by means of the linearized stability analysis.

2.4. Split step spectral (SSS) method

The SSS is similar to the scheme proposed by Taha and Ablowitz in [25], in which Eq. (1.1) is split into two equations at a
given time step as follows:
i�w�t ¼ �
�2

2
w�xx; ð2:14Þ
and
i�w�t ¼ ðaðjw
�j2 � 1Þ þ V�Þw�: ð2:15Þ
The first equation is a linear partial differential equation which can be solved exactly by the Fourier method, and the second
is an ordinary differential equation. The SSS scheme is given by
ewnþ1
j ¼ e

�is
� a jwn

j j
2�1

� �
þV

nþ1
2

j

� �
� wn

j ; ð2:16Þ

wnþ1
j ¼ F�1

j e�is�k2p2=2p2 � Fk
ewnþ1

j

� �� �
; ð2:17Þ

V
n�1

2
j

� �
t
¼ �k

jwn
jþ1j

2 � jwn
j�1j

2

2h
; ð2:18Þ
where p is half of the space interval ½xL; xR� and Fk denotes a discrete Fourier transform. The SSS has a high accuracy, and the
truncation error is of order ðs2 þ hmÞwhere m denotes the smoothness of the solution. Using the linearized stability analysis,
we show that the SSS scheme is unconditionally stable.

2.5. Split step Runge–Kutta (SRK) method

The Runge–Kutta scheme is a well-known numerical algorithm for solving differential equations. In the proposed SRK
method, we first apply the five-point difference scheme to discretize the term �2

2 w�xx in Eq. (2.14), the resulting difference
equations are then solved by the fourth-order Runge–Kutta method. The SRK scheme is given as follows:
ewnþ1
j ¼ e

�is
� a jwn

j j
2�1

� �
þV

nþ1
2

j

� �
� wn

j ; ð2:19Þ

wnþ1
j ¼ ewnþ1

j þ ðK1 þ 2K2 þ 2K3 þ K4Þ=6; ð2:20Þ

K1 ¼ Gðewnþ1
j Þ; K2 ¼ Gðewnþ1

j þ 0:5K1Þ;

K3 ¼ Gðewnþ1
j þ 0:5K2Þ; K4 ¼ Gðewnþ1

j þ K3Þ;

Gðgn
j Þ ¼

i�s
2h2 ð�gn

jþ2=12þ 4gn
jþ1=3� 5gn

j =2þ 4gn
j�1=3� gn

j�2=12Þ;

ðVn�1
2

j Þt ¼ �k
jwn

jþ1j
2 � jwn

j�1j
2

2h
: ð2:21Þ
The truncation error of the SRK is of order ðs2 þ h4Þ, and the scheme is conditionally stable with a weak stable condition de-
fined by the Runge–Kutta method. It should be note that, unlike the SSS scheme, the proposed SRK can incorporate general
boundary conditions such as the Dirichlet or Neumann types.

2.6. Runge–Kutta method with five-point difference (RK5)

Another approach to solve Eq. (1.1) is directly using the Runge–Kutta method. In order to achieve a high accuracy in the
space direction, the term �2

2 w�xx is discretized by a five-point difference formula in RK5. The resulting discrete difference equa-
tions are then solved by the fourth-order accurate RK method. The RK5 scheme is given by
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wnþ1
j ¼ wn

j þ ðK1 þ 2K2 þ 2K3 þ K4Þ=6; ð2:22Þ
K1 ¼ Gðwn

j Þ; K2 ¼ Gðwn
j þ 0:5K1Þ;

K3 ¼ Gðwn
j þ 0:5K2Þ; K4 ¼ Gðwn

j þ K3Þ;

Gðgn
j Þ ¼

i�s
2h2 �gn

jþ2=12þ 4gn
jþ1=3� 5gn

j =2þ 4gn
j�1=3� gn

j�2=12
� �

� is
�

ajgn
j j

2 � aþ V
nþ1

2
j

� �
� gn

j ;

ðVn�1
2

j Þt ¼ �k
jwn

jþ1j
2 � jwn

j�1j
2

2h
: ð2:23Þ
The truncation error of Eq. (2.22) is of order ðs4 þ h4Þ. The RK5 scheme is conditionally stable with a weak stable condition
given by the Runge–Kutta method.

2.7. Time-splitting spectral methods (BSP1 and BSP2)

Bao et al. [3] recently proposed two time-splitting spectral methods for Eq. (1.1).

1. BSP1
ewnþ1
j ¼ F�1

j e�is�k2p2=2p2 � Fkðwn
j Þ

� �
; ð2:24Þ

wnþ1
j ¼ e�

is
� ðaðjewnþ1

j
j2�1ÞþV

nþ1
2

j
Þ � ewnþ1

j ; ð2:25Þ

ðVn�1
2

j Þt ¼ �k
jwn

jþ1j
2 � jwn

j�1j
2

2h
; ð2:26Þ
2. BSP2
�wnþ1
j ¼ e�

is
2�ðaðjw

n
j j

2�1ÞþV
nþ1

2
j
Þ � wn

j ; ð2:27Þewnþ1
j ¼ F�1

j e�is�k2p2=2p2 � Fkð�wn
j Þ

� �
; ð2:28Þ

wnþ1
j ¼ e�

is
2�ðaðjewnþ1

j
Þj2�1ÞþV

nþ1
2

j
Þ � ewnþ1

j ; ð2:29Þ

ðVn�1
2

j Þt ¼ �k
jwn

jþ1j
2 � jwn

j�1j
2

2h
; ð2:30Þ
The BSP1 is essentially the same as the SSS scheme reported in Eqs. (2.16)–(2.18). The main difference is in the order of solv-
ing the split Eqs. (2.14) and (2.15). Notice that in BSP2, Eq. (2.15) is solved twice. The truncation errors of BSP1 and BSP2 are
of order ðs2 þ hmÞ, where m denotes the smoothness of the solution. Both BSP1 and BSP2 schemes are unconditionally stable
by means of the linearized stability analysis.
Remark. More accurate schemes have been employed to compute Eq. (1.2). However, numerical results using the more
accuracy schemes are almost the same as those based on the simple second order scheme for Eq. (2.2). It is also of interest to
note that, the Schrödinger equation itself shows the dimensional relation ½t� ¼ ½x�2, i.e., it has a diffusion scaling. Comparing
with the SRK method which has truncation error of order ðs2 þ h4Þ, this implies that s has dimension h2, ½s� ¼ ½h�2, which is
consistent with the Schrödinger equation. This can be regarded as the dimensional analysis’s interpretation of the stability
analysis.
3. Conservative properties

The long-wave short-wave interaction equations admit certain conservation laws, and they have been reported by Lin and
Wong in [19]. For accurate numerical computations, it is important that the numerical schemes presented in the last section
also preserve the conservative properties.

Theorem 3.1. The following conservation properties are held in the CNI scheme Eqs. (2.1)–(2.5);
kwnk2 ¼ const:; ð3:1Þ

h
XJ

j¼0

V
nþ1

2
j ¼ const:; ð3:2Þ

h
XJ

j¼1

ðVn�1
2

j Þtjw
n
j j

2 ¼ 0; ð3:3Þ

En ¼ const:; ð3:4Þ
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where the energy density En is given by
En ¼ �
2

2
kwn

xk
2 þ a

2
h
XJ

j¼1

ðjwn
j j

2 � 1Þ2 þ h
XJ

j¼1

V
n�1

2
j jw

n
j j

2
: ð3:5Þ
Proof. Computing the inner product of Eq. (2.1) with ðwnþ1
j þ wn

j Þ and taking the imaginary part, we have
i�
ðwnþ1

j � wn
j ;w

nþ1
j þ wn

j Þ
s

þ �
2

4
ððwnþ1

j þ wn
j Þx�x;w

nþ1
j þ wn

j Þ � a
jwnþ1

j j2 þ jwn
j j

2

2
� 1

 !
þ V

nþ1
2

j

 !
wnþ1

j þ wn
j

2
;wnþ1

j þ wn
j

 !
¼ 0;
where
Reðwnþ1
j � wn

j ;w
nþ1
j þ wn

j Þ ¼ kw
nþ1k2 � kwnk2

;

Im ðwnþ1
j þ wn

j Þx�x;w
nþ1
j þ wn

j

� �
¼ �Imððwnþ1

j þ wn
j Þx; ðw

nþ1
j þ wn

j ÞxÞ ¼ 0;

Im að
jwnþ1

j j2 þ jwn
j j

2

2
� 1Þ þ V

nþ1
2

j

 !
wnþ1

j þ wn
j

2
;wnþ1

j þ wn
j

 !

¼ Imh
XJ

j¼1

a
jwnþ1

j j2 þ jwn
j j

2

2
� 1

 !
þ V

nþ1
2

j

 !
jwnþ1

j þ wn
j j

2

2
¼ 0:
Here Im and Re denote the imaginary and real parts of a complex number respectively and the pair ð�; �Þ is the inner product.
Thus,
kwnþ1k2 ¼ kwnk2 ¼ � � � ¼ kw0k2 ¼ const:
Summing up (2.2) for j, it gives
h
XJ

j¼0

V
nþ1

2
j ¼ h

XJ

j¼0

V
n�1

2
j � ks

2

XJ

j¼0

jwn
jþ1j

2 �
XJ

j¼0

jwn
j�1j

2

 !

¼ h
XJ

j¼0

V
n�1

2
j � ks

2

XJ

j¼0

jwn
j j

2 �
XJ

j¼0

jwn
j j

2

 !

¼ h
XJ

j¼0

V
n�1

2
j ¼ � � � ¼ h

XJ

j¼0

V
�1

2
j ¼ const:;
where the boundary condition (2.5) is used. Computing the inner product of Eq. (2.2) with jwn
j j

2, it yields
h
XJ

j¼1

ðVn�1
2

j Þtjw
n
j j

2 ¼ � k
2h

h
XJ

j¼1

ðjwn
jþ1j

2jwn
j j

2j � jwn
j�1j

2jwn
j j

2Þ ¼ 0:
Finally, computing the inner product of Eq. (2.1) with ðwnþ1
j � wn

j Þ and taking the real part, we obtain
Re
�2

4
ððwnþ1

j þ wn
j Þx�x;w

nþ1
j � wn

j Þ �
a
4
ðjwnþ1

j j2 þ jwn
j j

2Þðwnþ1
j þ wn

j Þ;w
nþ1
j � wn

j Þ
�
þ a

2
ðwnþ1

j þ wn
j ;w

nþ1
j � wn

j Þ �
1
2

h
XJ

j¼1

V
nþ1

2
j ðw

nþ1
j þ wn

j Þðw
nþ1
j � wn

j Þ
#
¼ 0: ð3:6Þ
The terms of Eq. (3.6) are computed as follows:
Re
�2

4
ððwnþ1

j þ wn
j Þx�x;w

nþ1
j � wn

j Þ
� �

¼ Re � �
2

4
ððwnþ1

j þ wn
j Þx; ðw

nþ1
j � wn

j ÞxÞ
� �

¼ � �
2

4
ðkwnþ1

x k2 � kwn
xk

2Þ;

Re �a
4
ðjwnþ1

j j2 þ jwn
j j

2Þðwnþ1
j þ wn

j Þ;w
nþ1
j � wn

j Þ
h i

¼ �a
4

h
XJ

j¼1

ðjwnþ1
j j4 � jwn

j j
4Þ;

Re
a
2
ðwnþ1

j þ wn
j ;w

nþ1
j � wn

j Þ
h i

¼ a
2

h
XJ

j¼1

ðjwnþ1
j j2 � jwn

j j
2Þ;
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Re �1
2

h
XJ

j¼0

V
nþ1

2
j ðw

nþ1
j þ wn

j Þðw
nþ1
j � wn

j Þ
" #

¼ �1
2

h
XJ

j¼1

V
nþ1

2
j ðjw

nþ1
j j2 � jwn

j j
2Þ

¼ �1
2

h
XJ

j¼1

ðVnþ1
2

j jw
nþ1
j j2 � V

n�1
2

j jw
n
j j

2Þ þ 1
2

h
XJ

j¼1

ðVnþ1
2

j � V
n�1

2
j Þjw

n
j j

2

¼ �1
2

h
XJ

j¼1

ðVnþ1
2

j jw
nþ1
j j2 � V

n�1
2

j jw
n
j j

2Þ � sk
4

XJ

j¼1

ðjwn
jþ1j

2 � jwn
j�1j

2Þjwn
j j

2

¼ �1
2

h
XJ

j¼1

ðVnþ1
2

j jw
nþ1
j j2 � V

n�1
2

j jw
n
j j

2Þ � sk
4

XJ

j¼1

ðjwn
jþ1j

2jwn
j j

2 � jwn
j�1j

2jwn
j j

2Þ

¼ �1
2

h
XJ

j¼1

ðVnþ1
2

j jw
nþ1
j j2 � V

n�1
2

j jw
n
j j

2Þ;
where Eq. (2.2) and the boundary condition (2.5) are applied. Thus, we have from Eq. (3.6) that
� �
2

4
ðkwnþ1

x k2 � kwn
xk

2Þ � a
4

h
XJ

j¼1

ðjwnþ1
j j4 � jwn

j j
4Þ þ a

2
h
XJ

j¼1

ðjwnþ1
j j2 � jwn

j j
2Þ � 1

2
h
XJ

j¼1

ðVnþ1
2

j jw
nþ1
j j2 � V

n�1
2

j jw
n
j j

2Þ ¼ 0;
i.e.,
�2

4
kwnþ1

x k2 þ a
4

h
XJ

j¼1

ðjwnþ1
j j2 � 1Þ2 þ 1

2
h
XJ

j¼1

V
nþ1

2
j jw

nþ1
j j2 ¼ �

2

4
kwn

xk
2 þ a

4
h
XJ

j¼1

ðjwn
j j

2 � 1Þ2 þ 1
2

h
XJ

j¼1

V
n�1

2
j jw

n
j j

2 ¼ � � � ¼

¼ �
2

4
kw0

xk
2 þ a

4
h
XJ

j¼1

ðjw0
j j

2 � 1Þ2 þ 1
2

h
XJ

j¼1

V
�1

2
j jw

0
j j

2 ¼ const:
It is clear that the discrete conservation laws presented in Eqs. (3.1)–(3.5) are analogous to the conservation laws given in Eq.
1.5 and (1.7)–(1.10), for which the differential Eqs. (1.1)–(1.4) hold. Therefore, the CNI scheme Eqs. (2.1)–(2.5) preserves the
important conservative properties. h

Theorem 3.2. The 3LE scheme Eqs. (2.8) and (2.9) possesses the discrete conservation laws (3.2) and (3.3) and
h
XJ

j¼1

Reðwnþ1
j wn

j Þ ¼ const: ð3:7Þ
Proof. Computing the inner product of Eq. (2.8) with wn
j and by taking the imaginary part, we get Eq. (3.7). The proofs of (3.2)

and (3.3) are the same as those already reported in the Theorem 3.1. h

Theorem 3.3. The HOP scheme Eqs. (2.11)–(2.13), the SRK method Eqs. (2.19)–(2.21), and the RK5 method Eqs. (2.22) and
(2.23) satisfy the discrete conservation laws (3.2) and (3.3).

The proof of this theorem is standard and will be omitted.

Theorem 3.4. The SSS method Eqs. (2.16)–(2.18), time-splitting spectral BSP1 Eqs. (2.24)–(2.26) and BSP2 Eqs. (2.27)–(2.30)
satisfy the discrete conservation laws (3.1)–(3.3).

Proof. From Eq. (2.16), it yields
jewnþ1
j j ¼ jwn

j j:
By using the Parseval’s relation twice, we have
kwnþ1k2
2 ¼ ðxR � xLÞ

XM2�1

k¼�M
2

ðFkðewnþ1
j ÞÞ2 ¼ h

XJ

j¼1

jewn
j j

2 ¼ kwnk2
2:
Similar deduction shows that the conservation laws (3.1) holds for BSP1 and BSP2. The proofs of (3.2) and (3.3) are the
same as those given in the Theorem 3.1. h
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Remark. All conservative theorems reported in this section also hold for the homogeneous Dirichlet boundary condition.
4. Plane wave solution

In this section, we consider a special case for the differential system Eqs. (1.1)–(1.4), in which an exact plane wave solu-
tion can be derived.

Let
V e ¼ d;

w� ¼ Aeiðkpx=p�xtÞ;

�
ð4:1Þ
where d, A, k and x are constants. Substituting (4.1) into Eqs. (1.1) and (1.2), it gives
i�ð�ixÞw� þ �2

2 ði kp
p Þ

2w� � ðaðA2 � 1Þ þ dÞw� ¼ 0;

V�t ¼ �kðjw�j2Þx ¼ 0:

(
ð4:2Þ
It then follows from Eq. (4.2) that
x ¼
p2�2k2

2p2 þ aA2 � aþ d

�
: ð4:3Þ
Therefore, if x satisfies the dispersion relation Eq. (4.3), Eqs. (1.1)–(1.4) has an exact plane wave solution given by Eq. (4.1).
Here, we consider the discrete plane wave solution
Vn
j ¼ d;

wn
j ¼ Aeiðkpjh=p�xnsÞ ¼ Arneikpjh=p; r ¼ e�ixs; jrj ¼ 1:

(
ð4:4Þ
4.1. Crank–Nicolson implicit scheme

For the CNI scheme, substituting Eq. (4.4) into Eq. (2.1), we have
i�
s

Arneikpp jhðr � 1Þ þ �2

4h2 ðe
ikhp

p � 2þ e�ikhp
p ÞArneikp

p jhðr þ 1Þ � ðaA2 � aþ dÞ r þ 1
2

Arneikp
p jh ¼ 0 ð4:5Þ
which gives
r ¼
i�þ �2s

h2 sin2 khp
2p þ s

2 ðaA2 � aþ dÞ
i�� �2s

h2 sin2 khp
2p � s

2 ðaA2 � aþ dÞ
; jrj ¼ 1; ð4:6Þ
and � �

x ¼ 1

s
arcsin

s 2�3

h2 sin2 khp
2p þ eðaA2 � aþ dÞ

�2 þ s2 �2

h2 sin2 khp
2p þ 1

2 ðaA2 � aþ dÞ
� �2 ¼

2�3

h2 sin2 khp
2p þ �ðaA2 � aþ dÞ

�2 þ s2 �2

h2 sin2 khp
2p þ 1

2 ðaA2 � aþ dÞ
� �2 þ Oðs2Þ

¼
p2�2k2

2p þ aA2 � aþ d

�
þ Oðs2 þ h2Þ: ð4:7Þ
It is clear that the plane wave solution satisfies the CNI scheme with the error Oðs2 þ h2Þ.

4.2. Three-level explicit scheme

Substituting Eq. (4.4) into Eq. (2.8), we have
i�
2s
ðr2 � 1Þ þ �2

2h2 eikhp
p � 2þ e�ikhp

p

� �
r � ðaA2 � aþ dÞr ¼ 0
which is equivalent to
i�r2 � 2sKr � i� ¼ 0 where K � 2�2

h2 sin2 khp
2p
þ aA2 � aþ d:
Thus
r ¼ �2isK�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4s2K2 þ 4�2

p
2�

: ð4:8Þ
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It follows from (4.8) that jrj ¼ 1, if
s 6 �
K
: ð4:9Þ
When the condition (4.9) is satisfied, we get
x ¼ 1
s

arcsin
2sK
2�
¼ K
�
þ Oðs2Þ ¼

p2�2k2

2p2 þ aA2 � aþ d

�
þ Oðh2 þ s2Þ: ð4:10Þ
Remark. The condition (4.9) holds for any integer k P 0. Thus, it is equivalent to
s 6 �
K
¼ �

2�2

h2 þ aA2 � aþ d
which can be expressed approximately as
s 6 h2

2�
; ð4:11Þ
for h sufficiently small. The condition (4.11) is the linearized stability condition for the three-level scheme.
4.3. Hopscotch Scheme

In the HOP scheme, implicit and explicit steps are carried out alternatively. For a fixed j, the solution is computed by Eq.
(2.10) when nþ j is even at time step nþ 1, and then follows by Eq. (2.11) at time step nþ 2. At the nþ 1 step, this is equiv-
alent to a three-level scheme given by
i�
wnþ1

j � wn�1
j

s þ �2ðwn
j Þx�x � 2 a

jwn
jþ1j

2 þ jwn
j�1j

2

2
� 1

 !
þ V

n�1
2

j

 !
wn

j ¼ 0; ð4:12Þ
when nþ j is odd. At the nþ 2 step, the HOP scheme is equivalent to
i�
wnþ2

j � wn
j

s
þ �

2

2
ððwnþ2

j Þx�x þ ðw
n
j Þx�xÞ

� a
jwnþ2

jþ1 j
2 þ jwnþ2

j�1 j
2

2
� 1

 !
þ V

nþ3
2

j

 !
wnþ2

j � a
jwn

jþ1j
2 � jwn

j�1j
2

2
� 1

 !
þ V

nþ1
2

j

 !
wn

j ¼ 0; ð4:13Þ
when nþ j is even.
Substituting Eq. (4.4) into Eqs. (4.12) and (4.13), we have
i�
s
ðr2 � 1Þ þ �

2r

h2 eikhp
p � 2þ e�ikhp

p

� �
� 2rðaA2 � aþ dÞ ¼ 0; ð4:14Þ
and
i�
s
ðr2 � 1Þ þ �2

2h2 eikhp
p � 2þ e�ikhp

p

� �
ðr2 þ 1Þ � ðaA2 � aþ dÞðr2 þ 1Þ ¼ 0: ð4:15Þ
It is noted that only r ¼ 1 satisfies Eqs. (4.14) and (4.15) simultaneously. Therefore, the HOP scheme does not admit the plane
wave solution.

4.4. Split step spectral method

Using the formulae given in Eqs. (2.14) and (2.15) and the discrete Fourier transform, we have the plane wave solution for
the SSS method,
wn
j ¼ Aeiðkpp jh�xnsÞ;ewnþ1
j ¼ Ae�

is
� ðaA2�aþdÞþikp

p jh�ixns;

Flðewnþ1
j Þ ¼ A

1
M

XM2�1

j¼�M
2

ewnþ1
j e�

2pijl
M ¼

0; l 6¼ k;

Ae�isðaA2�aþd
� þxnÞ; l ¼ k;

(
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where M ¼ 2p
h and
wnþ1
j ¼ Ae

�is�k2p2

2p2 e�is aA2�aþd
� þxn

� 	
e

2pijk
M :
This is equal to the plane wave solution at the nþ 1 time step, i.e.,
wnþ1
j ¼ Aei kpjh

p �xðnþ1Þsð Þ:
Thus, we get
�ixðnþ 1Þs ¼ � is�k2p2

2p2 � is aA2 � aþ d
�

þxn

 !
;

i.e.,
x ¼
p2�2k2

2p2 þ aA2 � aþ d

�
: ð4:16Þ
Therefore, the SSS scheme admits the exact plane wave solution, which is consistent with the high accuracy of the SSS
scheme.

4.5. Split step Runge–Kutta method

Substituting (4.4) into (2.19) and (2.20), we get
ewnþ1
j ¼ Ae�

is
� ðaA2�aþdÞrneijkph

p ;

wnþ1
j ¼ ewnþ1

j þ 1
6
ðK1 þ K2 þ K3 þ K4Þ;

K1 ¼ Gðewnþ1
j Þ ¼ i�s

3h2
ewnþ1

j �8 sin2 kph
2p
þ 1

2
sin2 kph

p


 �
� qewnþ1

j ;

K2 ¼ G 1þ q
2
ewnþ1

j

� �
¼ 1þ q

2

� �
qewnþ1

j ;

K3 ¼ 1þ q
2
ð1þ q

2
Þ

� �
qewnþ1

j ;

K4 ¼ 1þ q 1þ q
2

1þ q
2

� �� �� �
qewnþ1

j :
Combining the formulae, implies
wnþ1
j ¼ ewnþ1

j 1þ q 1þ q
6
þ q

6
1þ q

2

� �
þ q

6
1þ q

2
1þ q

2

� �� �� �� �� �
:

Using the Taylor’s expansion, we have
8 sin2 kph
2p
� 1

2
sin2 kph

p
¼ 3

2
k2p2h2

p2 þ Oðh6Þ
which gives
q ¼ � is�k2p2

2p2 þ Oðh4Þ:
Thus,
wnþ1
j ¼ ewnþ1

j 1� is�k2p2

2p2 þ Oðh4Þ
 !
and
r ¼ e�
is
� ðaA2�aþdÞ 1� is�k2p2

2p2 þ Oðs2 þ h4Þ
 !

;

from which we have
x ¼
p2�2k2

2p þ aA2 � aþ d

�
þ Oðs2 þ h2Þ: ð4:17Þ
The plane wave solution satisfies the SRK method with the error Oðs2 þ h4Þ.
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4.6. Runge–Kutta Method with five-point difference

Similar to the deduction for the SRK method, the RK5 Scheme Eqs. (2.22) and (2.23) satisfies
x ¼
p2�2k2

2p þ aA2 � aþ d

�
þ Oðs2 þ h4Þ; ð4:18Þ
i.e., the plane wave solution holds with the error Oðs2 þ h4Þ.

4.7. Time-splitting spectral methods

It follows from the deduction for the SSS method that
x ¼
p2�2k2

2p þ aA2 � aþ d

�
: ð4:19Þ
The plane wave solution satisfies exactly the time-splitting spectral methods BSP1 and BSP2.

Remark. From the analysis of the plane wave solution, we note that the order of accuracy of the the numerical schemes are
the same as those of the truncation errors of the corresponding schemes. In the 3LE scheme, the condition for the existence of
the plane wave solution is the same as that required for the stability. The truncation error of the HOP scheme is
O s2 þ h2 þ s2

h2

� �
and may be Oð1Þ for general step sizes in space and time. Hence, no plane wave solution is expected for the

HOP scheme. The analysis of the plane wave solution presented in this section serves as a useful tool for testing the
numerical schemes.
5. Case studies

To validate the proposed computational schemes for the long-wave short-wave interaction equations, we consider
the following case studies. In order to compare the numerical solutions with the known exact solutions, we first con-
sider cases when the initial condition V�0ðxÞ in Eq. (1.4) is a constant, such that V�0ðxÞ ¼ d. Taking k ¼ 0 in Eq. (1.2), the
long-wave solution remains constant with V�ðx; tÞ ¼ d. Here, we focus on the initial condition for the short-wave given
by
w�0ðxÞ � A0ðxÞ exp
i
�

S0ðxÞ

 �

;

with the following choices for A0ðxÞ and S0ðxÞ.

5.1. Initial data of plane wave with weak Oð�Þ cubic defocusing nonlinearity

For the plane wave solution discussed in Section 4, the initial data is chosen as:
A0ðxÞ ¼ A; S0ðxÞ ¼
�kpx

p
:

The exact solution is then given by
w�ðx; tÞ ¼ A exp i
kpx

p
�xt


 �
 �
; ð5:1Þ
where x is defined in Eq. (4.3). In performing the computation, we use the following values for the parameters:
A ¼ 2; K ¼ 1; P ¼ 5; d ¼ 1 a ¼ 1:
5.2. Initial data of plane wave with strong Oð1Þ cubic defocusing nonlinearity

We consider a stronger plane wave and the initial data given by
A0ðxÞ ¼ A; S0ðxÞ ¼
kpx

p
:

The exact solution is
w�ðx; tÞ ¼ A exp i
kpx
�p
�xt


 �
 �
; ð5:2Þ
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where
x ¼
p2k2

2p2 þ aA2 � aþ d

�

In performing the computation, we use the following values for the parameters:
A ¼ 2; K ¼ 1; P ¼ 5; d ¼ 1 a ¼ 1:
5.3. Initial data of the soliton

Next, we consider a soliton solution for Eqs. (1.1)–(1.4). It is easy to verify that the soliton solution
w�ðx; tÞ ¼ sechðc0xþ c1 þ c2tÞ expð�iðc3xþ c4 þ c5tÞÞ; ð5:3Þ
satisfies the following equations:
�c3c0 � c2 ¼ 0;
�2c2

0 þ a ¼ 0;
c5 � �

2 c2
0 � �

2 c2
3 � d

� ¼ 0:

8><>: ð5:4Þ
Hence, we let the initial value be
A0ðxÞ ¼ sechðc0xþ c1Þ; S0ðxÞ ¼ ��ðc3xþ c4Þ; ð5:5Þ
and the constants be taken as
c0 ¼
1ffiffiffi
�
p ; c1 ¼ 2; c2 ¼ �4; c3 ¼ �

�4ffiffiffi
�
p ; c4 ¼ 2c3; c5 ¼

17
2
þ 1
�
; a ¼ ��:
In addition to the three cases with exact solutions, we also consider the following initial data which have been commonly
chosen for the long-wave short-wave equations.

5.4. Zero initial phase data

Let
A0ðxÞ ¼ e�x2
; S0ðxÞ ¼ 0: ð5:6Þ
This is very similar to the purely soliton data reported early by Miller and Kamvissis [22], where
A0ðxÞ ¼ 2sechðxÞ; S0ðxÞ ¼ 0:
For the data set considered in [22], the Zakharov–Shabat operator has purely imaginary eigenvalues and the reflection coef-
ficients are exactly zero. For the present data, the eigenvalues are almost purely imaginary and the reflection coefficients are
exponentially small for small �.

5.5. Symmetric initial data with nonzero phase

Let
A0ðxÞ ¼
sinhð2xÞ

cosh2ð2xÞ
; S0ðxÞ ¼

1
coshð2xÞ : ð5:7Þ
The eigenvalues generated by this data have been studied numerically by Bronski [8]. The eigenvalues are symmetric about
the pure imaginary axis, and they are located roughly on a convex‘‘parabola” whose vertex is at the origin. The top of the
‘‘parabola” are at the points 0:5� i and 0:5þ i, Thus, an eigenvalue has a large real part if it has also a large imaginary part,
and the eigenvalues have distinct real parts.

5.6. Nonsymmetric initial data

Let
A0ðxÞ ¼
1

coshð2xÞ ; S0ðxÞ ¼
2x

coshð2xÞ : ð5:8Þ
This example lacks the even/odd symmetry possessed by the initial data given in III and IV. Moreover, the eigenvalues are not
right/left symmetric [6].
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5.7. Non-analytic initial data

Let
Table 1
Compar

Method

CNI

3LE

HOP

SSS

SRK

RK5

BSP1

BSP2

The com
A0ðxÞ ¼
1� jxj if jxj < 1;
0 otherwise;

�
S0ðxÞ ¼

1
coshð2xÞ : ð5:9Þ
Notice that this initial data is not analytic at x ¼ 0 and x ¼ �1:

Remark. In this section, all initial data are given in the interval ½�p;þp�, where L ¼ 2p is the length of the computational
domain. But, in actual computational, the interval is re-scaled to ½0; L�.
6. Numerical experiments

In this section, we investigate the accuracy and the efficiency of various numerical schemes. First, the numerical algo-
rithms are tested for Cases I–III for which the corresponding exact solutions are known. The computed solutions are com-
pared using the approach reported in [9]. Namely we fix the accuracy ðL1Þ from t ¼ 0 to t ¼ T and let the step sizes h and
s vary. For each scheme, the step sizes are chosen such that the numerical solution is stable and the least computing time
to attain a given accuracy is recorded. The CPU in second is based on a PC Pentium computer, and the efficiency of various
algorithms can be compared from the reported computing time.
ison of various schemes for the plane wave solution Eq. (5.1)

� Step size Time (s) Łp
1 Lv

1 E1 E2

1.0 h ¼ 1:25s ¼ :03 2.65 (�4) 1.57(�2) 8.62(�7) 1.17(�6) 2.13(�6)
0.1 h ¼ 2:5s ¼ :0015 2.28(�3) 1.58(�2) 1.78(�7) 8.89(�7) 1.19(�6)
0.01 h ¼ 2s ¼ :00005 7.81(�2) 1.62(�2) 3.12(�5) 6.85(�5) 1.26(�4)
0.001 h ¼ 2:5s ¼ :0000007 4.92(0) 9.46(�3) 9.29(�11) 1.72(�6) 3.25(�6)

1.0 h ¼ 2s ¼ :06 1.56 (�5) 1.81(�2) 6.70(�8) 1.70(�3) 3.09(�3)
0.1 h ¼ 2:5s ¼ :001 6.25(�4) 6.96(�3) 8.78(�12) 4.47(�7) 8.42(�7)
0.01 h ¼ 2:5s ¼ :00004 1.56(�2) 1.65(�2) 1.35(�14) 8.27(�7) 1.55(�6)
0.001 h ¼ 2:5s ¼ :0000006 9.06(�1) 4.04(�3) 0.0 1.62(�5) 3.06(�5)

1.0 h ¼ 1:25s ¼ :0004 6.09 (�3) 1.82(�2) 1.58(�4) 3.92(�3) 7.09(�3)
0.1 h ¼ 2:5s ¼ :000001 1.31(0) 1.98(�2) 1.71(�7) 8.02(�4) 1.50(�3)
0.01 h ¼ s ¼ *

1.0 h ¼ 2:5s ¼ :5 9.38 (�6) 0.0 0.0 8.39(�9) 1.52(�8)
0.1 h ¼ 2:5s ¼ :5 9.38(�6) 0.0 0.0 4.72(�8) 8.87(�8)
0.01 h ¼ 2:5s ¼ :5 9.38(�6) 0.0 0.0 8.41(�9) 1.58(�8)
0.001 h ¼ 2:5s ¼ :5 9.38(�6) 1.19(�7) 0.0 8.86(�8) 1.66(�7)
0.0001 h ¼ 2:5s ¼ :5 9.38(�6) 1.19(�7) 0.0 6.91(�8) 1.30(�7)
0.00001 h ¼ 2:5s ¼ :5 9.38(�6) 0.0 0.0 4.81(�8) 9.06(�7)

1.0 h ¼ 2:5s ¼ :5 5.78 (�6) 1.07(�2) 0.0 0.0 0.0
0.1 h ¼ 2:5s ¼ :5 5.78(�6) 1.07(�3) 0.0 0.0 0.0
0.01 h ¼ 2:5s ¼ :5 5.78(�6) 1.16(�4) 0.0 0.0 0.0
0.001 h ¼ 2:5s ¼ :5 5.78(�6) 6.48(�5) 0.0 0.0 0.0
0.0001 h ¼ 2:5s ¼ :5 5.78(�6) 1.01(�3) 0.0 0.0 1.67(�6)
0.00001 h ¼ 2:5s ¼ :5 5.78(�6) 1.01(�2) 0.0 0.0 0.0

1.0 h ¼ 2s ¼ :1 3.13 (�5) 1.66(�2) 2.20(�8) 1.40(�4) 2.55(�4)
0.1 h ¼ 2:5s ¼ :006 4.68(�4) 1.47(�2) 1.66(�10) 4.04(�5) 7.61(�5)
0.01 h ¼ 2:5s ¼ :0004 7.81(�3) 8.91(�3) 3.69(�7) 1.02(�4) 1.93(�4)
0.001 h ¼ 2:5s ¼ :000005 5.93(�1) 1.80(�2) 2.29(�14) 5.00(�7) 9.41(�7)

1.0 h ¼ 2:5s ¼ :5 9.38(�6) 1.19(�7) 0.0 6.84(�8) 1.24(�7)
0.1 h ¼ 2:5s ¼ :5 9.38(�6) 5.87(�7) 0.0 5.16(�8) 9.72(�8)
0.01 h ¼ 2:5s ¼ :5 9.38(�6) 8.11(�6) 0.0 1.97(�8) 3.71(�8)
0.001 h ¼ 2:5s ¼ :5 9.38(�6) 3.89(�5) 0.0 5.69(�9) 1.07(�8)
0.0001 h ¼ 2:5s ¼ :5 9.38(�6) 3.83(�6) 0.0 6.58(�8) 1.23(�7)
0.00001 h ¼ 2:5s ¼ :5 9.38(�6) 4.05(�7) 0.0 4.30(�8) 8.11(�8)

1.0 h ¼ 2:5s ¼ :5 1.09(�5) 1.19(�7) 0.0 5.16(�8) 9.40(�8)
0.1 h ¼ 2:5s ¼ :5 1.09(�5) 1.19(�7) 0.0 6.21(�8) 1.16(�7)
0.01 h ¼ 2:5s ¼ :5 1.09(�5) 9.70(�6) 0.0 9.36(�8) 1.76(�7)
0.001 h ¼ 2:5s ¼ :5 1.09(�5) 3.81(�5) 0.0 4.20(�8) 7.92(�8)
0.0001 h ¼ 2:5s ¼ :5 1.09(�5) 1.72(�3) 0.0 5.29(�8) 9.97(�8)
0.00001 h ¼ 2:5s ¼ :5 1.09(�5) 6.65(�3) 0.0 2.44(�8) 4.60(�8)

puting time corresponds to CPU required to reach L1 < 0:02 from t ¼ 0 to t ¼ 0:5.
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Throughout the computation, the conservation errors are closely monitored, and they are defined by E1 ¼ ðH
n
1�H0

1Þ
H0

1
and

E2 ¼ ðH
n
2�H0

2Þ
H0

2
; where Hn

1 ¼ kw
nk2

l2
and Hn

2 ¼ h
PJ

j¼1ðV
n�1

2
j Þtjw

n
j j

2. For cases with known exact solutions, we define the solution er-

rors as Lp
1 ¼maxjjwn

j � wðxj; tnÞj and Lv
1 ¼ maxjjVn

j � Vðxj; tnÞj; where wðxj; tnÞ and Vðxj; tnÞ are the exact solutions at the point
ðxj; tnÞ.

In Tables 1–3, we report the computations applied to the plane wave and soliton models, respectively. Particular attention
is focused on the accuracy of various numerical schemes, the errors in the L1 norm and the conservative quantities given in
Eqs. (3.1) and (3.3) are reported. Figs. 1 and 2 illustrate the exact solutions for Cases I and III and with � ¼ 1 and 0.00001.
Here, ‘‘ 1.57(�2)” denotes 1:57� 10�2, and ‘‘ *” indicates the solution fails to reach the given accuracy within 1000 CPU
seconds.
Table 2
Comparison of various schemes for the strong defocusing nonlinearity Eq. (5.2)

Method � Step size Time (s) Lp
1 Lv

1 E1 E2

SRK 1.0 h ¼ 2:0s ¼ :5 1.37 (�5) 9.50(�3) 9.81(�8) 2.33(�8) 4.11(�8)
0.1 h ¼ 0:125s ¼ :06 1.73(�3) 1.61(�2) 1.38(�7) 7.69(�7) 1.39(�6)
0.01 h ¼ :005s ¼ :0018 1.39(0) 4.32(�3) 2.15(�6) 3.49(�8) 6.68(�8)

BSP1 1.0 h ¼ 2:5s ¼ :5 1.87 (�5) 7.63(�7) 4.27(�8) 1.45(�7) 5.31(�7)
0.1 h ¼ :3125s ¼ :1 1.39(�3) 7.87(�3) 1.10(�7) 9.77(�7) 2.01(�8)
0.01 h ¼ 0:0195s ¼ :01 1.87(�1) 7.72(�3) 3.54(�6) 1.91(�8) 3.47(�8)

The computing time corresponds to CPU required to reach L1 < 0:02 from t ¼ 0 to t ¼ 1:0.

Table 3
Comparison of various schemes for the soliton solution Eq. (5.3)

Method � Step size Time (s) Łp
1 Lv

1 E1 E2

CNI 1.0 h ¼ :02s ¼ :006 2.81 (�1) 9.28(�3) 0.0 6.65(�7) 8.05(�7)
0.1 h ¼ :0035s ¼ :0035 2.90(0) 8.90(�3) 0.0 6.23(�6) 3.61(�5)
0.01 h ¼ :0003s ¼ :0003 5.72(2) 9.56(�3) 0.0 5.02(�5) 8.53(�5)
0.001 h ¼ s ¼ *

3LE 1.0 h ¼ :025s ¼ :0003 7.03 (�1) 8.74(�3) 0.0 8.93(�3) 2.38(�7)
0.1 h ¼ :008s ¼ :0003 2.21(0) 8.89(�3) 0.0 2.01(�7) 1.27(�6)
0.01 h ¼ :0035s ¼ :0002 3.47(1) 9.39(�3) 0.0 1.52(�7) 2.82(�7)
0.001 hs *

HOP 1.0 h ¼ s ¼ *

SSS 1.0 h ¼ :3125s ¼ :05 3.13 (�3) 7.95(�3) 0.0 2.19(�6) 7.54(�4)
0.1 h ¼ :078s ¼ :05 1.56(�2) 7.97(�3) 0.0 1.73(�6) 7.87(�4)
0.01 h ¼ :039s ¼ :04 3.12(�2) 6.15(�3) 0.0 3.19(�6) 6.97(�5)
0.001 h ¼ :0097s ¼ :05 1.09(�1) 8.01(�3) 0.0 2.51(�6) 6.19(�6)
0.0001 h ¼ :0024s ¼ :05 4.21(�1) 7.89(�3) 0.0 2.56(�6) 2.88(�6)
0.00001 h ¼ 6:10ð�4Þs ¼ :05 1.87(0) 7.71(�3) 0.0 3.17(�7) 2.28(�7)

SRK 1.0 h ¼ :12s ¼ :015 1.11(�2) 9.24(�3) 0.0 1.02(�5) 8.80(�5)
0.1 h ¼ :038s ¼ :015 3.53(�2) 9.28(�3) 0.0 1.00(�5) 1.75(�4)
0.01 h ¼ :012s ¼ :015 1.13(�1) 9.24(�3) 0.0 1.03(�5) 2.44(�5)
0.001 h ¼ :0038s ¼ :015 3.06(�1) 9.30(�3) 0.0 1.01(�5) 1.23(�5)
0.0001 h ¼ :0012s ¼ :015 1.03(0) 9.26(�3) 0.0 1.03(�5) 1.08(�5)
0.00001 h ¼ :000385s ¼ :016 2.99(0) 9.61(�3) 0.0 1.40(�5) 1.42(�5)

RK5 1.0 h ¼ :1s ¼ :01 3.12 (�2) 4.35(�3) 0.0 2.14(�6) 1.59(�5)
0.1 h ¼ :03s ¼ :008 9.38(�2) 3.59(�3) 0.0 2.25(�5) 1.66(�4)
0.01 h ¼ :01s ¼ :002 6.93(0) 5.80(�3) 0.0 7.24(�4) 1.34(�3)
0.001 h ¼ :0033s ¼ :00015 1.41(2) 8.79(�3) 0.0 1.10(�3) 1.31(�3)

BSP1 1.0 h ¼ :3125s ¼ :05 3.13 (�3) 8.07(�3) 0.0 2.64(�6) 8.05(�4)
0.1 h ¼ :078s ¼ :05 1.56(�2) 8.02(�3) 0.0 1.98(�6) 8.72(�4)
0.01 h ¼ :039s ¼ :04 3.12(�2) 8.25(�3) 0.0 3.07(�6) 4.95(�5)
0.001 h ¼ :0097s ¼ :05 1.09(�1) 8.07(�3) 0.0 2.76(�6) 2.16(�6)
0.0001 h ¼ :0024s ¼ :05 4.21(�1) 8.96(�3) 0.0 2.98(�6) 3.51(�6)
0.00001 h ¼ 6:10ð�4Þs ¼ :05 1.87(0) 8.19(�3) 0.0 2.66(�6) 2.69(�6)

BSP2 1.0 h ¼ :3125s ¼ :05 3.87 (�3) 6.16(�4) 0.0 2.03(�6) 1.54(�5)
0.1 h ¼ :078s ¼ :05 2.05(�2) 3.91(�4) 0.0 2.10(�6) 5.94(�6)
0.01 h ¼ :039s ¼ :04 3.84(�2) 3.65(�3) 0.0 3.28(�6) 1.22(�5)
0.001 h ¼ :0097s ¼ :05 1.25(�1) 3.51(�4) 0.0 2.82(�6) 3.25(�6)
0.0001 h ¼ :0024s ¼ :05 5.16(�1) 3.44(�4) 0.0 2.57(�6) 2.71(�6)
0.00001 h ¼ 6:10ð�4Þs ¼ :05 2.28(0) 1.34(�3) 0.0 2.66(�6) 2.70(�6)

The computing time corresponds to CPU required to reach L1 < 0:02 from t ¼ 0 to t ¼ 1:0.



Fig. 1. Real parts of the plane wave solution (Case I), � ¼ 1 (left) and � ¼ 0:00001 (right).

Fig. 2. Real Parts of the Soliton Solution, � ¼ 1 (left) and � ¼ 0:00001 (right).
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From the computational results presented for Case I, we note that all numerical schemes except the HOP are capable of
solving the plane wave solutions for � ¼ 1:0;0:1;0:01 and 0.001. It has been shown that the HOP does not admit the plane
wave solution in Section 4.3, and this remark is confirmed by the numerical simulation. For the plane wave solution with a
strong cubic defocusing nonlinearity Case II, the computation becomes more difficult as the parameter � is decreasing. In
Table 2, we compare only the SRK and BSP1 schemes for � ¼ 1;0:1;0:01. For the soliton solution reported in Table 3, the
CNI, 3LE and HOP methods fail when � is very small. RK5 method can be applied to both Cases I and III, but small step sizes
are required as � is decreasing. Hence, we conclude that for efficient computations especially for cases with a strong nonlin-
earity, a split step algorithm such as the SSS, SRK, BSP1 and BSP2 should be employed. In general, we expect that the mesh
sizes are chosen to be h ¼ Oð�Þ and s ¼ ð�Þ. The results in Tables 1 and 3 indicate that even as � is decreasing, the time step s
is almost constant. However, s is more sensitive for systems with a strong defocusing nonlinearity. Since the spectral based
algorithms have higher order of accuracy, in particularly in the space direction, smaller mesh sizes are required for the SRK
scheme.

Among the various split step schemes, the performance in terms of accuracy and computing time are comparable. Hence,
Table 4 only presents the computations based on SSS and SRK for Cases IV–VII, the results using BSP1 and BSP2 are compa-
rable to those based on SSS. In Fig. 3, the imaginary Parts for Case IV for � ¼ 1 and � ¼ 0:00001 are displayed. The SRK is capa-
ble of providing accurate solutions as the spectral based methods for a wide range of �, and the time step is not sensitive with
the variation of the value of �. It is of interest to note that the SRK requires less CPU time when � is small. For Cases IV–VII
with � ¼ 0:00001, the improvement of the computing time based on the SRK compared with those reported by the SSS meth-
od are 31%, 84%, 149% and 58%, respectively. From Fig. 4, we observe that better symmetry is preserved using the SRK (bot-
tom left) than the SSS (top right).

In the SRK scheme, it is crucial to employ a high order method such as the five-point difference to approximate the term
wxx. Table 5 compares the performance when the three-point finite-difference is used instead of the five-point formula for
Case III – soliton solutions. It is clear that when a low order approximation is used in SRK, much smaller step sizes in space
and times are required to ensure the stability for all values of �. Consequently, the computing time deteriorates significantly.

Notice that, by multiplying Eq. (1.1) with w� and taking the imaginary part, we have



Table 4
Computational results for Cases IV–VII and a ¼ 1:0

Method Model � Step size Time (s) E1 E2

SSS III 1.0 h ¼ :3125s ¼ :1 .0012 6.70(�7) 0.0024
0.00001 h ¼ :0048s ¼ :01 .9565 1.28(�5) 3.20(�4)

IV 1.0 h ¼ :3125s ¼ :1 .0012 1.12(�6) 6.15(�4)
0.00001 h ¼ :0048s ¼ :005 1.91 2.55(�5) 2.59(�6)

V 1.0 h ¼ :4687s ¼ :1 .0012 7.09(�7) 6.25(�3)
0.00001 h ¼ :0073s ¼ :005 1.93 2.55(�5) 9.19(�6)

VI 1.0 h ¼ :4687s ¼ :1 .0012 9.10(�7) 6.44(�3)
0.00001 h ¼ :0073s ¼ :005 1.97 2.55(�5) 5.58(�6)

SRK III 1.0 h ¼ :2s ¼ :04 .0027 2.22(�6) 9.51(�4)
0.00001 h ¼ :005s ¼ :008 .7315 1.34(�8) 1.08(�4)

IV 1.0 h ¼ :16s ¼ :025 .0051 5.66(�4) 6.38(�4)
0.00001 h ¼ :004s ¼ :005 1.036 3.16(�8) 8.34(�7)

V 1.0 h ¼ :2s ¼ :04 .0040 2.25(�3) 4.58(�3)
0.00001 h ¼ :005s ¼ :008 .7751 2.76(�8) 5.34(�5)

VI 1.0 h ¼ :2s ¼ :04 .0084 4.71(�3) 8.40(�3)
0.00001 h ¼ :004s ¼ :005 1.25 4.04(�8) 2.84(�5)

Fig. 3. Imaginary Parts for Case IV, � ¼ 1 (left) and � ¼ 0:00001 (right).
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2ðjw�j2Þt þ Im
�
2

w�xxw
�


 �
¼ 0:
The value of the jw�j2 at each point varies slowly with time for small �, which is illustrated in Fig. 4 for Case V. The profile
of jw�j2 is changing with time when � ¼ 1 (Fig. 4, top left), but the variation is almost unnoticeable when � ¼ 0:00001 (Fig. 4,
top right and bottom left). However, the real part (Fig. 4, bottom right) and the imaginary part of the solutions oscillate rap-
idly. In the computation, it suffices to reduce the step size in space with �, while the time step can keep constant. Since the
nonlinearity is weaker for small value of �, it leads to a slow variation of jw�j2 and a weak diffusion term �ðw�Þxx. Conse-
quently, from the computational point of view, it is not difficult to deal with problems of strong cubic defocusing nonlinear-
ity with small parameter of �. The SSS, SRK, BSP1 and BSP2 methods have also been successfully tested for non-symmetry
and non-analytical initial data (Cases VI and VII), but we will not report these results due to the page limitation.

Finally, we demonstrate that the SRK and the spectral based schemes can be used to compute general long-wave short-
wave interaction equations, i.e., the initial condition for V�0ðxÞ ¼ d is not a constant. Here, we only present the results based
on the SRK scheme, and consider a test case given as follows.

Bounded state solutions of (1.1) and (1.2) are, by definition, solutions of the form
w�ðx; tÞ ¼ eixtf ðx� ctÞ; V�ðx; tÞ ¼ gðx� ctÞ; ð6:1Þ
where f and g are functions which vanish at infinity in some sense, and x and c are real constants. For a more precise def-
inition of the bounded sate or the ground-state solutions, it means that ðw�;V�Þ minimizes the Hamiltonian functional of
(1.1) and (1.2). However, we will not discuss the detail in this section, readers interested in this topic are referred to [1,17].

Substituting (6.1) into Eqs. (1.1) and (1.2) leads to the following system of ordinary differential equations for f and g
�2

2
f 00 � i�cf 0 � ½af 2 � ða� �xÞ þ g�f ¼ 0; ð6:2Þ

� cg0 ¼ �kðjf j2Þ0: ð6:3Þ
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Fig. 4. Case V, SSS results � ¼ 1 (top left); � ¼ 0:00001 (top right); SRK results � ¼ 0:00001, (bottom left);and Real part of solution of model V, � ¼ 0:00001
(bottom right).
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We then deduce from (6.3) that
g ¼ k
c
jf j2 ð6:4Þ
except for a possible constant. Setting FðxÞ ¼ e�icx
� f ðxÞ, we find that F satisfies the following ordinary differential equation
�2F 00 � ajFj2F � bF ¼ 0; ð6:5Þ
where
a ¼ �2 aþ c
k

� �
; b ¼ 2ðc2 þ �x� aÞ:
This equation occurs in the study of the ground-state solution of the cubic nonlinear Schrödinger equation. When b > 0, F can
be computed explicitly
FðxÞ ¼

ffiffiffiffiffiffi
2b
jaj

s
1

cosh
ffiffi
b
p

� x
� � ¼ ffiffiffiffiffiffi

2b
jaj

s
sech

ffiffiffi
b
p

�
x

 !
: ð6:6Þ
Therefore f ðxÞ ¼ eicx
� Fðxþ x0Þ and gðxÞ ¼ Gðxþ x0Þ where x0 is a real number and
GðxÞ ¼ k
c

2b
jaj sech2

ffiffiffi
b
p

�
x

 !
: ð6:7Þ
As has been studied in [19], the zero-dispersion limit or the semi-classical limit of the long-wave short-wave interaction
Eqs. (1.1) and (1.2) is similar to the cubic nonlinear Schrödinger equation. Basically the short-wave wave plays more role
than the long wave. Although it does not show explicitly in the limit equation, indeed, the long-wave changes the initial data
in the semi-classical limit. To understand this phenomenon and the zero-dispersion limit of the associated ground-state



Table 5
Comparison of SRK with three-point and five-point difference for Case III.

Method � Step size Time (s) Łp
1 Lv

1 E1 E2

Three-point 1.0 h ¼ :025s ¼ :0008 1.34 (0) 8.73(�3) 0.0 2.48(�7) 1.05(�6)
0.1 h ¼ :008s ¼ :0008 4.31(0) 8.96(�3) 0.0 1.36(�7) 2.20(�7)
0.01 h ¼ :0025s ¼ :0008 1.40(1) 8.75(�3) 0.0 1.65(�7) 1.92(�8)
0.001 h ¼ :0008s ¼ :0009 4.28(1) 8.96(�3) 0.0 3.66(�9) 3.30(�9)
0.0001 h ¼ :00025s ¼ :0008 1.42(2) 8.75(�3) 0.0 2.87(�7) 3.82(�9)
0.00001 h ¼ :00008s ¼ :0009 4.18(2) 7.32(�3) 0.0 5.58(�8) 5.67(�8)

Five-point 1.0 h ¼ :12s ¼ :015 1.11(�2) 9.24(�3) 0.0 1.02(�5) 8.80(�5)
0.1 h ¼ :038s ¼ :015 3.53(�2) 9.28(�3) 0.0 1.00(�5) 1.75(�4)
0.01 h ¼ :012s ¼ :015 1.13(�1) 9.24(�3) 0.0 1.03(�5) 2.44(�5)
0.001 h ¼ :0038s ¼ :015 3.06(�1) 9.30(�3) 0.0 1.01(�5) 1.23(�5)
0.0001 h ¼ :0012s ¼ :015 1.03(0) 9.26(�3) 0.0 1.03(�5) 1.08(�5)
0.00001 h ¼ :000385s ¼ :016 2.99(0) 9.52(�3) 0.0 1.01(�5) 1.03(�5)

Fig. 5. juj2 (left) and V (right) of the bounded state solution for � ¼ 1.
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solution, we present numerical simulations with initial data related to the bound-state solutions. In particular, we consider
the cases when � ¼ 1 and � ¼ 0:001 in order to see the small dispersion effect. In Fig. 5, we choose the bounded state initial
conditions u0ðxÞ ¼

ffiffiffi
2
p

= coshðxÞ, V0ðxÞ ¼ 2=½coshðxÞ�2. In this case, for large dispersion � ¼ 1, the oscillation occurs only when
the time becomes large for real and imaginary parts of u. The oscillation is due to the dispersive nature of the short-wave.
However, juj2 is well behaved because of the conservation of density. Numerical simulations show that both juj2 and the
long-wave V look like a soliton for a while; at least before the splitting of the profile occurs, and the profiles are related
and agreed with the theoretical prediction of the bound state solution. In Fig. 6, we consider the small dispersion case,
� ¼ 0:001, with the same bounded state initial conditions u0ðxÞ ¼

ffiffiffi
2
p

= coshðxÞ, V0ðxÞ ¼ 2=½coshðxÞ�2. In this case, for a short
time, both real and imaginary parts of the short-wave u oscillate strongly. However, juj2 and V still behave well, and we ob-
serve peaks appear in the long-wave as time increases. Although the long-wave V satisfies the conservation law equation,
one will expect it should behave like a soliton wave. But as investigated in [19], the long-wave will affect the short-wave
Fig. 6. juj2 (left) and V (right) of the bounded state solution for � ¼ 0:001.
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for a weak coupling in the zero-dispersion limit. Therefore, it will be an interesting and challenging problem to investigate
the existence of the spike solutions in the long-wave–short-wave equations when the dispersion is small for the strong cou-
pling cases. For a smaller dispersion, say � ¼ 0:00001 for example, computations can be carried out, but the numerical solu-
tions are too chaotic to provide any detail structure. We would like to mention that although the short-wave u oscillates
strongly, the wave packet remains stable and it is expected to be well-behaved by using a suitable averaging.

Various numerical schemes are studied for the long-wave short-wave interaction equations. It has been demonstrated
that split step approach with spectral based algorithms is an efficient way to solve the coupled system numerically. In addi-
tion to the standard spectral methods, we introduce a novel SRK scheme which is based on a time-splitting approach com-
bined with the Runge–Kutta algorithm. The most attractive feature of the proposed SRK scheme is that it does not require the
application of a discrete Fourier transform. Not only do we observe that the computing time is comparable for most test
cases with small �, the SRK can directly apply to problems with general boundary conditions, while a periodic boundary con-
dition is required in a spectral method. Since the SRK scheme does not require the use of discrete Fourier transforms, from
the computational point of view, it may be even more efficient when dealing with problems in two and three dimensions.
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